Political Effects of Low Turnout at EP Elections

Patrick Bernhagen and Richard Rose
University of Aberdeen
www.abdn.ac.uk/cspp

15 November 2010

First draft; please do not cite without permission. Comments welcome!

Abstract
The European Parliament plays a central role in establishing representative links between European citizens and elites. But low overall turnout and potential differences in partisan inclinations between non-voters and voters may affect results at national and even EP levels. To investigate the extent to which the party preferences of non-voters differ from those of voters, we simulate the party choices of non-voters in each of the 27 EU member states by applying multiple imputation methods to PIREDEU data. Our results show that turnout has a larger effect at EP elections than at first order elections. Larger parties and those in government would incur noteworthy losses if turnout went up to national election levels; the changes would be bigger still if turnout went up to a theoretical maximum 100 percent. These changes can be explained by three aspects of second order elections: low turnout, less strategic voting, and more protest voting.

Prepared for presentation at the PIREDEU Final User Community Conference, 18-19 November, 2010, Brussels

Acknowledgements
This paper is part of a British ESRC-funded project on Representing Europeans (RES-062-23-1892) and draws on the 2009 European Election Study, organised through the Robert Schuman Centre of the European University Institute and funded by the European Commission.
Political Effects of Low Turnout at EP Elections

The European Union is one of the world’s largest political systems and one that intensely, and increasingly, affects the lives of hundreds of millions of citizens. Despite this importance of the polity and an increasing importance of the role of the European Parliament (EP) in the policy process, turnout to EP elections is low and has fallen substantially since the first direct elections in 1979. To date, very little is known about the consequences of this decline for the composition of the parliament (van der Eijk and van Egmond 2007). Which parties and party groups would win and which lose in the case of higher or even 100 percent turnout?

Simulations of the partisan effects of low turnout have focused primarily on the US context, which is characterized by two dominant parties in all districts and turnout almost as low as in EP elections (Citrin, Schickler and Sides 2003; Martinez and Gill 2005; Sides, Schickler, and Citrin 2008). Only a few studies have systematically assessed the consequences of low turnout in a cross-national perspective (Tóka 2004; Bernhagen and Marsh 2007; van der Eijk and van Egmond 2007). When it comes to the multinational elections to the EP, finally, no study to date has directly estimated the effects that higher turnout would have on the electoral performance of different parties and party groups. This is despite the fact that the causes of low and differential turnout at EP elections have enjoyed a fair share of scholarly attention (e.g. Flickinger and Studlar 2007, Franklin 2001; Mattila 2003).

EP elections provide an ideal testing ground for theoretical expectations about the political implications of low turnout. If turnout is already very high, say, above 80 percent, we cannot realistically expect an increase to make much difference to the result. However, where turnout is less than 50 percent, a doubling of the number voting can potentially have a serious impact. Turnout at EP elections is much lower than at general elections, so that turnout has potentially
larger substantive consequences for the partisan composition of parliament than in national
contexts, where turnout effect have generally found to be modest (e. g. Tóka 2004; Citrin,
Schickler and Sides 2003; Bernhagen and Marsh 2007). To the extent that turnout effects at EP
elections are nontrivial, they might in turn have important political consequences, as partisan
lines can be identified in the voting behaviour of MEPs (Hix et al. 2006). As a result, changes in
the relative strength between the parties may have implications for policy. Lastly, EP elections
consist of multiparty national contests. Compared to the two-party context this offers increased
variation on parties’ size and ideological position and therefore enhanced opportunities for
analyzing how citizens’ partisan preferences are filtered through turnout.

In the next section we outline our theoretical expectations about turnout effects at EP elections.
After that, we will introduce the data and our method for estimating turnout effects. We will then
present our findings and conclude with a discussion of the democratic quality of the European
Parliament.

How much difference could non-voters make?

The literature on voter turnout offers ample expectations of a pattern of bias against more
left-leaning parties, as these tend to be supported by electors with fewer resources who are
less likely to participate (Lijphart 1997; Pacek and Radcliff 2003). However, individual-level
analyses of turnout effects have led to mixed results concerning this expectation. Bernhagen and
Marsh (2007), analyzing a total of 28 national elections in 25 countries, find left-right effects to
be statistically insignificant when party-level gains at 100 percent turnout are predicted. Tóka
(2004) finds a small but consistent boost for left parties when turnout increases in European
national elections. Similarly, van der Eijk and van Egmond (2007) find left parties would be hurt
moderately if national election turnout fell to EP election levels. Given these mixed findings to
date and the larger scope for turnout effects at EP elections, we formulate the positive hypothesis that

H1. *Left-wing parties benefit most from higher turnout.*

More generally, it has been claimed that non-voters are non-voters because they have little contact with agencies of mobilisation (Rosenstone and Hansen 1993; Brady, Verba and Schlozman 1995). Following this logic, we might expect larger parties to have more resources to mobilise potential supporters, and to be more effective at mobilising any latent support. Smaller parties often lack mobilization capacity. Consequently, potential voters with a preference for smaller parties may be more likely to stay at home on election day. Considerations of strategic voting and higher abstention in the face of effectively high electoral thresholds provide an additional reason for the expectation that small parties would benefit the most from hypothetical turnout increases. Empirically, Bernhagen and Marsh (2007) have shown that non-voters are more likely to endorse a smaller party. We therefore expect that

H2. *Smaller parties benefit most from higher turnout.*

The above arguments tend to view voters and non-voters as entirely separate groups of people but in fact we know that many people move both into and out of the electorate over time. Habitual voters may abstain because they are acutely unhappy with the incumbent performance of their traditional party, be it because of the state of the economy (Fiorina 1981, Kiewiet 1983) or because of the inevitable failure by any government to deliver on some of their election pledges. At any rate we know that governing parties tend to lose votes (Nannestad and Paldam 2002), and some of that loss will be due to abstention by erstwhile supporters. The resulting expectation that incumbent parties should gain from higher turnout may even hold a fortiori in the context of EP elections, where government parties have been shown to fare relatively bad in
European elections (Ferrara and Weishaupt 2004; Hobolt et al. 2009; Marsh 1998). However, for first-order elections DeNardo (1980) and Bernhagen and Marsh (2007) have shown that increased turnout actually harms incumbents. The second-order character of EP elections also suggests a negative effect of turnout on the fate of government parties. As government formation is not at stake, second order elections encourage both protest votes as well as non-strategic votes (Reif and Schmitt 1980; Schmitt 2005; van der Eijk and Franklin 1996). Government parties – almost by definition – do not tend to benefit from protest votes, and they well have benefited from strategic voting when they won the election that heaved them into office. Consequently, a rise in turnout could be expected to disproportionately bring out votes for parties other than incumbent government parties:

H3. Opposition parties benefit most from higher turnout.

Data and method

We use data from the PIREDEU voter survey of the 2009 EP Elections. The method used for estimating the vote choices of non-voters is multiple imputation (Dubin and Rivers, 1989). Assuming that the vote choices of non-voters constitute data that actually exist but have not been observed or recorded because these potential voters chose not to reveal their party choice in the polling booth means that multiple imputation (MI) provides an appropriate and efficient method of arriving at estimates of these non-recorded vote choices (Bernhagen and Marsh 2010). Originally proposed by Rubin (1976), MI involves three steps.

First, plausible values for missing observations are created that reflect uncertainty about the nonresponse model. These values are used to ‘fill-in’ the missing data points. This process is repeated, resulting in the creation of a number of ‘completed’ datasets – in the present case, ten. Random draws from the residual distribution of each imputed variable are made and added to
the imputed values, so that estimates of the parameters of interest will be slightly different depending on which imputed dataset is used. This variability will subsequently be used to adjust the standard errors upward by averaging the parameters of interest and combining their standard errors according to a formula devised by Rubin (1987). As vote choice in multiparty elections is a categorical variable measuring choices among k candidates, multiple imputations are generated for k dummy variables created from the categories of the original vote choice variable.

In a second step, the vote proportions of the different parties are obtained for each of the ten datasets is analyzed using standard methods. Thirdly, the vote proportions each imputed dataset are averaged and the standard error for the estimate is obtained through the following three steps: (1) the standard errors for the ten proportion estimates are squared and then averaged; (2) the sample variance in the proportions estimates across the data sets is calculated; (3) the results from (1) and (2) are added together, weighted by a factor that corrects for the bias resulting from a number of estimates smaller than infinity, and the square root is taken (cf. Rubin 1987).

Most multivariate datasets contain missing values on several, perhaps even on most, variables. This is also the case for the PIREDEU voter survey, but missingness on variables other than vote choice is actually very low. Furthermore, the accuracy of the imputations can be improved by including more, and more informative, variables in the imputation process (Collins, Schaffer and Kam, 2001). To estimate turnout effects in this way we use the Amelia II program (Version 1.2-4, 13 May 2009) written by Honaker, King and Blackwell. Amelia II uses an expectation-maximization (EM) algorithm to generate values in the place of missing observations (see Honaker, James and King, 2006 for a detailed exposition). EM always starts with the full covariance matrix, which means that it uses all the available variables as predictors for imputing the missing data (Allison, 2002: 20). Thus, the MI model uses more information, both in terms
of more variables and more observations than predictions of vote choice based on multinomial logit models (Citrin et al. 2003; Martinez and Gill 2005), which first delete considerable amounts of existing data before filling in gaps on the vote choice variable (Bernhagen and Marsh 2009).

Using the PIREDEU data enables us to use of an extensive set of variables that can plausibly be suspected to be related to vote choice and turnout. We include gender and age, as these variables are often found to be influential in determining candidate or party preference. Additional sociodemographic variables, such as education, social class, urban-versus-rural residence, and religious service attendance are also included, as it has been conjectured that these sociodemographic variables influence either turnout or vote choice or both. Beyond these sociodemographic characteristics, we include respondents’ left-right self-placement, their attitude to European unification, evaluations of the economy, media consumption habits, interest in the EP election campaign, and a measure of EU-specific political knowledge. Above all, however, we are able to impute missing data points based on the reported party preferences of voters and non-voters as recorded by the reported probability to vote for each of a number of prompted parties. In addition, for some countries we were able to include information on how the respondents said they voted in the last general election – which invariably had higher turnout than the EP election in their country.

The extensive set of data employed here enables us to go well beyond the sociodemographic correlates of turnout. The inclusion of party preferences at least allows for the possibility that abstainers might be those with preferences that run counter to the norm in their social groups, thus providing a significant improvement over simulations based solely on demographics (Bernhagen and Marsh 2010). As the political variables add to the overall richness of the set of
predictors in the model they also make the assumption underlying the MI procedure more realistic. Lastly, for Belgium, Estonia, Finland, Latvia and Lithuania we included self-identification with an importance ethnic minority group; for countries with regionally distinct electoral cleavages (Belgium, Germany, Spain, UK) we included the appropriate regional dummies in the imputation model. A list of the variables included in the multiple imputation model is provided in Appendix A.

While multiple imputation allows us to estimate vote choice for all non-voters, we have to ask just what level of participation is meaningful to simulate. Lijphart (1997) suggests that 100 percent turnout and many analyses of turnout effects use this standard. However, Kohler and Rose (2010) show that this level of turnout is a limit approached but not attained even in the heyday of the Soviet Union. Even at national elections with compulsory voting, turnout only reaches 90 percent because of deficiencies in the electoral register and infirmities and absences of electors. Moreover, compulsory voting encourages unwilling electors to spoil their ballot. After discounting invalid votes, the empirical maximum for turnout is at the level of 85 percent.\(^1\)

The second order elections to the EP provide us with a natural benchmark for the maximum turnout that can be reasonably expected in each of the ember states – the turnout rate at the most recent first-order election (cf. van der Eijk and van Egmond 2007). If this had achieved at the 2009 EP election, it would have boosted turnout by more than half from an EP cross-national mean of 46 percent to a mean of 71 percent turnout in national, first-order elections. In the present paper, we will simulate two alternative scenarios of higher turnout and compare their

\(^1\) In EU countries that have compulsory voting at national elections, turnout averages 85 percent of the registered electorate, because of spoiled ballots, dead names on the register and some electors being abroad, infirm or otherwise unable or unwilling to vote (Kohler and Rose 2010, 120ff).
effects on party vote shares: the theoretical maximum of 100 percent turnout, and the more
realistic rise of a country’s EP election turnout to the turnout observed at the last first order
election that immediately preceded the 2009 EP elections. To estimate the vote shares of parties
under a scenario of 1st order election turnout, we predict the turnout propensity for each
individual non-voter from a standard turnout model, using binary logistic regression. The
predicted probabilities to vote are then used to sort all non-voters from the least to the most
likely potential voter and add them in decreasing vote propensity to the actual (reported) voters
until the respective turnout rate is reached.

Lastly, because our measure of individual non-voting is the missing value on the vote choice
variable and therefore prone to under-sampling of non-voters, we weighted the distribution of
voters and non-voters with actual turnout figures from the official election results.

Results

Figure 1 provides summary overviews of the extent of the changes at the party level. There is
wide variation between parties in terms of the gains and losses incurred from higher turnout
at national, first order elections. To compare the results to turnout effects at first order
elections in OECD countries, a similar figure from Bernhagen and Marsh’s (2007) study of
turnout effects is displayed alongside the EP election findings. Based on CSES data, the
histogram in the top left corner paints a clear picture of the changes to parties’ vote shares

2 In the case of Luxembourg, we used the concurrently held election of June 2009.
3 In the cases of Ireland, Latvia and Romania, reported EP voter participation is higher EP election than official
participation in the most recent general election. Fortunately, within each of these countries, the real difference
between EP election turnout and first order election turnout is reproduced by the reported turnout for the respective
elections. Thus, for these two countries we use the reported turnout rate at the most recent general election as the
first order election turnout rate.
that can be expected from 100 percent turnout: hardly any. For more than half of all parties, changes are within a percentage point from zero change, and for most of the remaining parties any changes are very small indeed. A similar picture emerges when we look at the changes in parties’ vote share due to turnout rising from its actual levels at the 2009 EP elections to the levels of the most recent first order election in the respective country (top right histogram). While this distribution has a slightly bigger belly due to larger numbers of parties experiencing gains and losses up to two percentages points, the central message here too is that changes tend to be close to zero. A more meaningful comparison between Bernhagen and Marsh’s (2007) analysis of first order elections and the EP elections analyzed here would be with a 100 percent turnout scenario at the 2009 EP elections. This is depicted in the bottom left histogram, which has a much flatter, fatter shape. Here, the percentage of parties whose vote change is within a percentage points from zero change is less than 20 percent. Considerable numbers of parties make small gains in the region of two to four percentage points, while a small number of parties incur quite substantial losses from 100 percent turnout.

[Figure 1 about here]

Given the small size of these turnout effects and the uncertainty of our estimates, many small changes may in fact not be statistically different from zero. Multiple imputation of vote choices allows us to estimate the appropriate uncertainty of our simulations. This is shown in the 95 percent confidence intervals around the vote share estimates in Appendix B.\(^4\) The differences that are statistically significant at the 5 percent level often affect the largest party. In six countries (Austria, Czech Republic, Cyprus, France, Hungary, and the UK) an increase to turnout levels observed at first-order elections would lead to the largest party incurring

\(^4\) For France, *Les Verts* formed part of the *Europe Écologie* coalition. As the voter survey did not take this coalition into account in its questionnaire, the two appear as separate parties in Appendix B.
considerable losses that are significant at the 5 percent level. For example, the vote share of the Conservative party in the UK would drop from a reported 28.5 percent to 22.3 percent if turnout at the EP election was as high as at the 2005 general election. The 95 percent confidence interval of the estimate under first order election turnout is 18.06 to 26.6 percent – which is also slightly below the official Conservative vote of 26.9 percent. While smaller parties tend to be the winners of turnout increase to first order election levels, the gains of each individual smaller party are usually not large enough to be statistically significant. And sometimes smaller parties incur significant losses too. In the Netherlands, the vote share of D66 would drop from 12.9 percent to 8.8 percent (95 percent C.I.: 6.1 – 11.5) if EP turnout rose to the level of the previous general election.

If turnout were to rise to 100 percent across all member states, bigger changes can be expected. A total of twelve countries would witness considerable and statistically significant losses for the largest parties. In five of these countries (Cyprus, Czech Republic, Poland, Spain and UK), 100 percent turnout would reverse the order of the two strongest parties, giving the actual second party a statistically significant lead over the actual first party. This accord with Bernhagen and Marsh’s (2007) finding that 100 percent turnout tends to reduce the gap between the strongest and second-strongest party. Furthermore, in twelve countries would the vote share of smaller parties be significantly altered from its actual level. Full details of all parties’ actual vote shares and their hypothetical counterparts at first order election and 100 percent turnout are provided in Appendix B.

To address our hypotheses, we start by analyzing whether left-wing parties benefit more from higher turnout than right-wing parties. To test this proposition we regress the change in party vote share from increased turnout on the ideological position of parties as reflected in the left-
right self placement of their supporters. When turnout rises to first-order election levels, the slope has the expected sign \(b = -0.07 \) but is smaller than its heteroskedasticity-robust standard error (S.E. = 0.09). The absence of a significant relationship between ideology and turnout effects is also reflected in the fact that the variance of vote changes remains largely unexplained \((R^2 = 0.01) \). Even if turnout rose further to its theoretical; maximum, left-right- ideology has only a tenuous relationship with the size of turnout effects. The negative slope coefficient of \(b = -0.36 \) (S.E. = 0.19) is significant at the 10 percent level and almost all the variance in vote changes remains unexplained by this simple bivariate model \((R^2 = 0.02) \). Figure 2 illustrates this weak relationship between turnout and left-party vote, suggesting that left parties have little to gain from increases in turnout.

[Figure 2 about here]

Next, we investigate whether smaller parties benefit more from higher turnout than larger ones. The slope coefficient from bivariate regression of vote changes under first order election turnout on party strength is \(b = -0.09 \). This estimate is highly significant (S.E. = 0.01) and accounts for forty percent of the variance in parties’ vote share changes \((R^2 = 0.39) \). When turnout rises to 100 percent, the coefficient for party strength is \(b = -0.25 \) (S.E. = 0.03). This estimate suggests that for every additional percentage point in a party’s vote share, the party loses a quarter of a percentage point as a result of 100 percent turnout. This single variable explains half the variance in turnout effects \((R^2 = 0.51) \). Figure 3 illustrates these effects graphically.

[Figure 3 about here]

Would government parties benefit or suffer from higher turnout? To investigate this question, we compare the mean turnout effects for government parties and opposition parties. The picture is quite clear. Whether we consider turnout increases to first order election levels or 100 percent,
government parties can expect losses from higher turnout while other parties tend to gain. Under both scenarios the difference in vote change between incumbents and non-incumbents is statistically significant (first order election turnout: $t = 2.44, p = .008$; 100 percent turnout: $t = 2.43, p = .009$). Not surprisingly, the differences are more pronounced under a scenario of 100 percent turnout (Figure 4).

![Figure 4 about here]

Discussion

We have investigated the extent to which the political preferences of non-voters differ from those of voters by simulating the party choices of non-voters in each of the 27 EU member state using multiple imputation on the PIREDEU voter survey. Our results show that turnout has a larger effect at EP elections that first order elections. Large parties and those in government would incur losses if turnout went up to national election levels; the changes would be bigger still if turnout went up to 100 percent. These changes can be explained by three aspects of second order elections: low turnout, less strategic voting, and more protest voting.

Projecting results from a past election to a future election must always be qualified by the *ceteris paribus* clause: all other conditions remaining equal. However, by definition, the very act of doubling turnout creates a situation substantially different from that used as the basis of projections and should have a feedback effect on both parties and electors. Parties will direct efforts to gain the votes of electorates whose inclination to favour them is a matter of degree rather than a firm commitment, and the stimulus required to mobilize apathetic electors to the polls is likely to make them reflect on their prior party inclinations. Moreover, since non-voters tend to be less informed and less interested in politics, they are likely to be less consistent in their preferences over time, or even inconsistent in matching their inclinations to their actual
party choice (Selb and Lachat 2009, 581ff). It is legitimate to make comparisons between the past views of non-voters as against those of actual voters, the approach adopted here and by other authors. However, to project such figures into the future requires taking into account contingent effects that are likely to vary not only between countries but also from election to election within a country (Kohler and Rose, 2010: 130ff).

Furthermore, as Kohler and Rose (2010) have pointed out, the interesting question behind the scholarly concern with turnout is this: What would it take for an increase in turnout to alter an election result, that is, the allocation of public offices? To answer this question and understand the potential effect of increased or decreased turnout we have to go beyond the estimation of the party preferences of non-voters and take into account the multiplicity of variables that produce an election result. These include electoral institutions and party competition as well as the behaviour of the electorate, which is but an input to the electoral process. The output is the award of seats between parties or candidates (Grofman et al. 1999; Kohler and Rose 2010). In the present paper, we have analyzed how the input to this process would change if more people voted. It will be left to future research to determine the output.
Appendix A. Variables in imputation model

Days a week follow news
Interest in EP election campaign
Actual vote in last general election
Probability to vote for party 1
Probability to vote for party 2
Probability to vote for party 3
Probability to vote for party 4
Probability to vote for party 5
Probability to vote for party 6
Probability to vote for party 7
Probability to vote for party 8
Left-right self-placement
Retrospective sociotropic economic evaluation
Respondent’s attitude to European unification
Knowledge scale EU
Gender
Age
Social class (subjective)
Rural-urban area
Attendance at religious services
Education: isced level (cross-country comparable)

In addition to the above, the following variable was included in the imputation models for Belgium, Estonia, Finland, Latvia and Lithuania:
‘See self as [country] citizen, or [country region/ethnic] citizen?’

For countries with regionally distinct electoral cleavages (Belgium, Germany, Spain, UK) regional dummies were included in the imputation model.
Appendix B. Party vote shares in EP election, 1st order election, and 100 percent turnout
Conservatives UKIP Labour Liberal Democrats Green Party SNP BNP SNP

Reported 1st-order turnout Full turnout 95% CI
References

Figure 1. Losses and gains if turnout went up

Losses and gains by parties (% vote share)

Figure 2. Effect of Left-right ideology on vote changes (100 percent turnout)
Figure 3. Effect of party size on vote change

Figure 4. Effect of incumbency on vote change